Mail
info@regenemedasia.com
Phone
+66 92-719-7070
location
Bangkok, Thailand
1. Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., & Guillemin, G. J. (2012). Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. https://pubmed.ncbi.nlm.nih.gov/22848760/
2. Kane, A. E., & Sinclair, D. A. (2018). Sirtuins and NAD+ in the Development and Treatment of Metabolic and Cardiovascular Diseases. *Circulation research*, *123*(7), 868–885. https://
pubmed.ncbi.nlm.nih.gov/30355082/
3. Das, A., Huang, G. X., Bonkowski, M. S., Longchamp, A., Li, C., Schultz, M. B., ... & Sinclair, D. A. (2018). Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. *Cell*, *173*(1), 74-89. https://pubmed.ncbi.nlm.nih.gov/29570999/
4. Arumugam, T. V., & Kennedy, B. K. (2018). H2S to Mitigate Vascular Aging: a SIRT1 connection. *Cell*, *173*(1), 8-10. https://pubmed.ncbi.nlm.nih.gov/29571000/
5. Rotllan, N., Camacho, M., Tondo, M., Diarte-Añazco, E. M., Canyelles, M., Méndez-Lara, K. A., ... & Julve, J. (2021). Therapeutic potential of emerging NAD+-increasing strategies for cardiovascular diseases. *Antioxidants*, *10*(12), 1939.
6. Srivastava, S. (2016). Emerging therapeutic roles for NAD+ metabolism in mitochondrial and age-related disorders. *Clinical and translational medicine*, *5*, 1-11. https://pubmed.ncbi.nlm.nih.gov/27465020/
7. Johnson, S., & Imai, S. I. (2018). NAD+ biosynthesis, aging, and disease. *F1000Research*, *7*. https://pubmed.ncbi.nlm.nih.gov/29744033/
8. Rajman, L., Chwalek, K., & Sinclair, D. A. (2018). Therapeutic potential of NAD-boosting molecules: the in vivo evidence. *Cell metabolism*, *27*(3), 529-547. https://pubmed.ncbi.nlm.nih.gov/29514064/
9. Heer, C. D., Sanderson, D. J., Voth, L. S., Alhammad, Y. M., Schmidt, M. S., Trammell, S. A., ... & Brenner, C. (2020). Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. *Journal of Biological Chemistry*, *295*(52), 17986-17996. https://pubmed.ncbi.nlm.nih.gov/33051211/
10. Poltronieri, P., & Čerekovic, N. (2018). Roles of nicotinamide adenine dinucleotide (NAD+) in biological systems. *Challenges*, *9*(1), 3. https://www.mdpi.com/2078-1547/9/1/3
11. Koyuncu, E., Budayeva, H. G., Miteva, Y. V., Ricci, D. P., Silhavy, T. J., Shenk, T., & Cristea, I. M. (2014). Sirtuins are evolutionarily conserved viral restriction factors. *MBio*, *5*(6), 10-1128. https://pubmed.ncbi.nlm.nih.gov/25516616/
12. Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. I. (2011). Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. *Cell metabolism*, *14*(4), 528-536. https://pubmed.ncbi.nlm.nih.gov/21982712/
13. Ear, P. H., Chadda, A., Gumusoglu, S. B., Schmidt, M. S., Vogeler, S., Malicoat, J., ... & Brenner, C. (2019). Maternal nicotinamide riboside enhances postpartum weight loss, juvenile offspring development, and neurogenesis of adult offspring. *Cell reports*, *26*(4), 969-983. https://pubmed.ncbi.nlm.nih.gov/30673618/
14. Arduino, D. M., Esteves, A. R., Oliveira, C. R., & Cardoso, S. M. (2010). Mitochondrial metabolism modulation: a new therapeutic approach for Parkinson's disease. *CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)*, *9*(1), 105-119. https://pubmed.ncbi.nlm.nih.gov/20201821/
15. Lehmann, S., Loh, S. H., & Martins, L. M. (2017). Enhancing NAD+ salvage metabolism is neuroprotective in a PINK1 model of Parkinson's disease. *Biology open*, *6*(2), 141-147. https://pubmed.ncbi.nlm.nih.gov/28011627/
16. Schöndorf, D. C., Ivanyuk, D., Baden, P., Sanchez-Martinez, A., De Cicco, S., Yu, C., ... & Deleidi, M. (2018). The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. *Cell reports*, *23*(10), 2976-2988. https://pubmed.ncbi.nlm.nih.gov/29874584/
17. Ji, L. L., & Yeo, D. (2022). Maintenance of NAD+ homeostasis in skeletal muscle during aging and exercise. *Cells*, *11*(4), 710. https://pubmed.ncbi.nlm.nih.gov/35203360/
18. Liao, B., Zhao, Y., Wang, D., Zhang, X., Hao, X., & Hu, M. (2021). Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: A randomized, double-blind study. *Journal of the International Society of Sports Nutrition*, *18*(1), 54. https://pubmed.ncbi.nlm.nih.gov/34238308/
19. Janssens, G. E., Grevendonk, L., Perez, R. Z., Schomakers, B. V., de Vogel-van den Bosch, J., Geurts, J. M., ... & Hoeks, J. (2022). Healthy aging and muscle function are positively associated with NAD+ abundance in humans. *Nature aging*, *2*(3), 254-263. https://pubmed.ncbi.nlm.nih.gov/37118369/